提升带通滤波器器件仿真效率的方法

在频域有限元法设计品质因子高的带通滤波器类 RF 器件时,可能会遇到需要设置多个频率采样点以更准确地描述通带的情况。RF 器件仿真中包含的频率采样点的数量与求解时间成正比,即频率分辨率越高,求解时间就越长。 COMSOL Multiphysics® 软件的附加产品 RF 模块提供了2种强大的仿真方法,可以帮助提高这类器件的仿真效率。

2 种 RF 仿真方法简介
在今天的博客中,我们将讨论 2 种仿真方法:渐近波形估计(AWE)法和频域模态(FDM)方法。这两种方法都旨在帮助用户解决采用超精细频率分辨率,或通过常规的 频域 研究运行超宽带仿真时,求解时间过长这一常见问题。当涉及描述具有单一谐振或无谐振的平滑频率响应时,AWE 方法非常有效。而 FDM 方法则适用于快速分析多级滤波器,或者目标通带内有多个谐振的大量元件的滤波器。接下来,我们将讨论这两种方法的典型设置和应用场景。

需要说明的是,AWE 和 FDM 方法几乎都不依赖于所选的频率步长。您可以自由地减小频率步长的值,获得分辨率良好的结果绘图,而不会出现明显的速度减慢或额外的内存消耗。不过,这种做法也存在缺点:降低频率步长值可能会影响最终解中保存的数据量。在本文末尾的数据管理部分,我们将给出能显著减小输出文件大小的建议。

请注意,在使用精细分辨率进行 AWE 或 FDM 计算之前,最好先使用较粗的频率分辨率运行一个初步的 特征频率 和常规的 频域 仿真。这可以帮助您快速地估算谐振位置,总体了解系统的频率趋势,包括实际通带和所需的频率分辨率。

AWE 方法促进降阶模拟
AWE 是一种先进的降阶模拟技术,由于其数值特征和数学算法技术性太强,我们在此不过多赘述,只演示如何在 RF 模块中使用此方法。 自 COMSOL Multiphysics 6.2 版本开始,软件新增了有一个专门的 自适应频率扫描 研究步骤,可以实现 AWE 方法。使用此功能时,需要指定目标输出的频率范围,并选择一个表达式用于对AWE 算法进行误差估计。该方法求解器可执行快速频率自适应扫描,默认情况下,使用 Padé 近似。

邮箱

电话

服务热线
13926891355

电话

业务咨询 张小姐